If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+140x-1600=0
a = 1; b = 140; c = -1600;
Δ = b2-4ac
Δ = 1402-4·1·(-1600)
Δ = 26000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26000}=\sqrt{400*65}=\sqrt{400}*\sqrt{65}=20\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-20\sqrt{65}}{2*1}=\frac{-140-20\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+20\sqrt{65}}{2*1}=\frac{-140+20\sqrt{65}}{2} $
| 58+9y+5=90 | | 16y-20y+4=20 | | 7x+13x-6=5(4x+8) | | -4m-13m=17 | | Z=1,75-3v-196+3,75+3-169 | | -15+8x=2x+3* | | -16-14p=-10p | | _4+4x=3_18x | | 5x+1-x=x-5 | | -2-k=-3k | | 9+5x=91 | | 3x-26=x+16 | | |x/3|=11 | | 2w=-4w+18 | | 4x+2x+14=10x-22 | | 2(x+3)−3=−4(x−2)+x | | -3.4(m-1)=4.6(m-7.4) | | -2(5b-2)=-4(-3b+1)-4 | | x/12=4/6; | | 2x-4=16+10 | | 0.2x=0.9x-8=80/7 | | 4(x+2)=(21+3x)/2 | | –1=s+42 | | 1.29(h+1)=0 | | 5y-2y+12y=24+36 | | 5(x+5)=x+74 | | x+(-10)=-4 | | 7x+4=5x+2x+8-4 | | x+2(-5)=-4 | | -8-4y-y=7 | | 3(320/11)+y=38 | | -x-19,3=48,7 |